49 research outputs found

    Non-equilibrium effects in steady relativistic e+eγe^+e^-\gamma winds

    Full text link
    We consider an ultra-relativistic wind consisting of electron-positron pairs and photons with the principal goal of finding the asymptotic Lorentz factor γ\gamma_{\infty} for zero baryon number. The wind is assumed to originate at radius rir_i where it has a Lorentz factor γi\gamma_i and a temperature TiT_i sufficiently high to maintain pair equilibrium. As rr increases, TT decreases and becomes less than the temperature corresponding to the electron mass mem_e, after which non-equilibrium effects become important. Further out in the flow the optical depth τ\tau drops below one, but the pairs may still be accelerated by the photons until τ\tau falls below 2×105γi3/4\sim 2\times10^{-5} \gamma_{i}^{3/4}. Radiative transfer calculations show that only at this point do the radiation flux and pressure start to deviate significantly from their blackbody values. The acceleration of the pairs increases γ\gamma by a factor 45\sim 45 as compared to its value at the photosphere; it is shown to approach \gamma_{\infty} \sim 1.4\times 10^3 (r_i/10^6\mbox{cm})^{1/4} \gamma_{i}^{3/4} T_i/m_e.Comment: 41 pages, 9 figures. Submitted to MNRA

    Inferring the Spatial and Energy Distribution of Gamma Ray Burst Sources. II. Isotropic Models

    Get PDF
    We use Bayesian methods to analyze the distribution of gamma ray burst intensities reported in the Third BATSE Catalog (3B catalog) of gamma ray bursts, presuming the distribution of burst sources (``bursters'') is isotropic. We study both phenomenological and cosmological source distribution models, using Bayes's theorem both to infer unknown parameters in the models, and to compare rival models. We analyze the distribution of the time-averaged peak photon number flux, F, measured on both 64 ms and 1024 ms time scales, performing the analysis of data based on each time scale independently. Several of our findings differ from those of previous analyses that modeled burst detection less completely. In particular, we find that the width of the intrinsic luminosity function for bursters is unconstrained, and the luminosity function of the actually observed bursts can be extremely broad, in contrast to the findings of all previous studies. Useful constraints probably require observation of bursts significantly fainter than those visible to BATSE. We also find that the 3B peak flux data do not usefully constrain the redshifts of burst sources; useful constraints require the analysis of data beyond that in the 3B catalog (such as burst time histories), or data from brighter bursts than have been seen by BATSE (such as those observed by the Pioneer Venus Orbiter). In addition, we find that an accurate understanding of the peak flux distributions reported in the 3B almost certainly requires consideration of data on the temporal and spectral properties of bursts beyond that reported in the 3B catalog, and more sophisticated modeling than has so far been attempted.Comment: 66 pages, 33 figures; submitted to The Astrophysical Journal, 12/9

    Luminosity distance in Swiss cheese cosmology with randomized voids. II. Magnification probability distributions

    Full text link
    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (> 35 Mpc) structures, specifically voids and sheets. We use a simplified "Swiss cheese" model consisting of a \Lambda -CDM Friedman-Robertson-Walker background in which a number of randomly distributed non-overlapping spherical regions are replaced by mass compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz & Wald (1998), which includes the effect of lensing shear. The standard deviation of this distribution is ~ 0.027 magnitudes and the mean is ~ 0.003 magnitudes for voids of radius 35 Mpc, sources at redshift z_s=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ~ 1 Mpc, the standard deviation is reduced to ~ 0.013 magnitudes. This standard deviation due to voids is a factor ~ 3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ~ 20%, and also build a simplified analytic model that reproduces our results to within ~ 30%. Our model also allows us to explore the domain of validity of weak lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ~ 4%, and corrections to due shear are ~ 3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible

    Modification to the Luminosity Distance Redshift Relation in Modified Gravity Theories

    Full text link
    We derive an expression for the luminosity distance as a function of redshift for a flat Robertson-Walker spacetime perturbed by arbitrary scalar perturbations possibly produced by a modified gravity theory with two different scalar perturbation potentials. Measurements of the luminosity distance as function of redshift provide a constraint on a combination of the scalar potentials and so they can complement weak lensing and other measurements in trying to distinguish among the various alternative theories of gravity.Comment: 15 pages, we discuss in more detail how the luminosity distance expression can be used to differentiate among various theories of gravit

    Bounds on Cosmic Strings from WMAP and SDSS

    Full text link
    We find the constraints from WMAP and SDSS data on the fraction of cosmological fluctuations sourced by local cosmic strings using a Markov Chain Monte Carlo (MCMC) analysis. In addition to varying the usual 6 cosmological parameters and the string tension (μ\mu), we also varied the amount of small-scale structure on the strings. Our results indicate that cosmic strings can account for up to 7 (14)% of the total power of the microwave anisotropy at 68 (95)% confidence level. The corresponding bound on the string mass per unit length, within our string model, is Gμ<1.8(2.7)×107G\mu < 1.8 (2.7) \times 10^{-7} at 68 (95)% c.l., where this constraint has been altered from what appears below following the correction of errors in our cosmic string code outlined in a recent erratum, astro-ph/0604141. We also calculate the B-type polarization spectra sourced by cosmic strings and discuss the prospects of their detection.Comment: 11 pages, 7 figures. A few errors in the computer code used to calculated CMB anistotropy from strings are fixed, resulting in a somewhat tighter bound on G\mu and an enhanced B-mode polarization. Details of the corrected errors and their implications can be found in astro-ph/0604141. Go to http://physics.syr.edu/~lepogosi/cmbact.html for our now-corrected cosmic string CMB and LSS cod

    The Evolution Of LMC X-4 Flares: Evidence For Super-Eddington Radiation Oozing Through Inhomogeneous Polar Cap Accretion Flows ?

    Get PDF
    We present the results of two extensive Rossi X-ray Timing Explorer observations of large X-ray flaring episodes from the high-mass X-ray binary pulsar LMC X-4. Light curves during the flaring episodes comprise bright peaks embedded in relatively fainter regions, with complex patterns of recurrence and clustering of flares. We identify precursors preceding the flaring activity. Pulse profiles during the flares appear to be simple sinusoids, and pulsed fractions are proportional to the flare intensities. We fit Gaussian functions to flare peaks to estimate the mean full-width-half-maximum to be \sim68 s. Significant rapid aperiodic variability exists up to a few hertz during the flares, which is related to the appearance of narrow, spiky peaks in the light curves. While spectral fits and softness ratios show overall spectral softening as the flare intensity increases, the narrow, spiky peaks do not follow this trend. The mean fluence of the flare peaks is (3.1 ±\pm 2.9) ×\times 1040^{40} ergs in the 2.5--25 keV energy range, with its maximum at \sim1.9 ×\times 1041^{41} ergs. The flare peak luminosity reaches up to (2.1 ±\pm 0.2) ×\times 1039^{39} ergs s1^{-1}, far above the Eddington luminosity of a neutron star. We discuss possible origins of the flares, and we also propose that inhomogeneous accretion columns onto the neutron star polar caps are responsible for the observed properties.Comment: 39 pages (including figures and tables), accepted for publication in Ap

    Bayesian Analysis of the Polarization of Distant Radio Sources: Limits on Cosmological Birefringence

    Get PDF
    A recent study of the rotation of the plane of polarization of light from 160 cosmological sources claims to find significant evidence for cosmological anisotropy. We point out methodological weaknesses of that study, and reanalyze the same data using Bayesian methods that overcome these problems. We find that the data always favor isotropic models for the distribution of observed polarizations over counterparts that have a cosmological anisotropy of the type advocated in the earlier study. Although anisotropic models are not completely ruled out, the data put strong lower limits on the length scale λ\lambda (in units of the Hubble length) associated with the anisotropy; the lower limits of 95% credible regions for λ\lambda lie between 0.43 and 0.62 in all anisotropic models we studied, values several times larger than the best-fit value of λ0.1\lambda \approx 0.1 found in the earlier study. The length scale is not constrained from above. The vast majority of sources in the data are at distances closer than 0.4 Hubble lengths (corresponding to a redshift of \approx0.8); the results are thus consistent with there being no significant anisotropy on the length scale probed by these data.Comment: 8 pages, 3 figures; submitted to Phys. Rev.

    Systematic corrections to the measured cosmological constant as a result of local inhomogeneity

    Full text link
    We calculate the systematic inhomogeneity-induced correction to the cosmological constant that one would infer from an analysis of the luminosities and redshifts of Type Ia supernovae, assuming a homogeneous universe. The calculation entails a post-Newtonian expansion within the framework of second order perturbation theory, wherein we consider the effects of subhorizon density perturbations in a flat, dust dominated universe. Within this formalism, we calculate luminosity distances and redshifts along the past light cone of an observer. The resulting luminosity distance-redshift relation is fit to that of a homogeneous model in order to deduce the best-fit cosmological constant density Omega_Lambda. We find that the luminosity distance-redshift relation is indeed modified, by a small fraction of order 10^{-5}. When fitting this perturbed relation to that of a homogeneous universe, we find that the inferred cosmological constant can be surprisingly large, depending on the range of redshifts sampled. For a sample of supernovae extending from z=0.02 out to z=0.15, we find that Omega_Lambda=0.004. The value of Omega_Lambda has a large variance, and its magnitude tends to get larger for smaller redshifts, implying that precision measurements from nearby supernova data will require taking this effect into account. However, we find that this effect is likely too small to explain the observed value of Omega_Lambda=0.7. There have been previous claims of much larger backreaction effects. By contrast to those calculations, our work is directly related to how observers deduce cosmological parameters from astronomical data.Comment: 28 pages, 3 figures, revtex4; v2: corrected comments and the section on previous work; v3: clarified wording. References adde
    corecore